
Smart contracts
security assessment

Final report
Tariff: Standard

Arbius Protocol
January 2024

0xguard.com hello@0xguard.com

https://0xguard.com/#tariffs

Contents

Arbius Protocol Security assessment

January 2024 2

1. Introduction 3
2. Contracts checked 4
3. Procedure 4
4. Known vulnerabilities checked 5
5. Classification of issue severity 6
6. Issues 6
7. Conclusion 10
8. Disclaimer 11

Introduction

The report has been prepared for Arbius Protocol.

The project consists of:

- upgradable project's BaseToken: an ERC-20 token with Permit and Votes extensions, it can be

minted by a single privileged l2Gateway account;

- L1Token: an ERC-20 standard token contract without minting, upgradability, and modifications in

transfer functions;

- TimelockV1: a direct import of OpenZeppelin's TimelockController, can't be upgraded;- GovernorV1:

a governance contract inheriting OpenZeppelin's

Governor, GovernorSettings, GovernorVotes, GovernorCompatibilityBravo, GovernorVotesQuorumFraction,

and GovernorTimelockControl, can't be upgraded;

- upgradable EngineV1: the main contract to store models, tasks, and solutions. It also administers

rewards, fees, and solution's contestations.

The code is available at the GitHub repository and was audited after the commit

eba18c2b437a0408c67bba1a003de4c6cc3055e8.

The audit scope excludes the following contracts:

all contracts in the Example folder.

Report Update.

The contract's code was updated according to this report and rechecked after the commit

e17188236e37488154484c7167616d525c915c07.

Arbius Protocol Security assessment

January 2024 3

https://docs.openzeppelin.com/contracts/5.x/api/token/erc20#ERC20Permit
https://docs.openzeppelin.com/contracts/5.x/api/token/erc20#ERC20Votes
https://docs.openzeppelin.com/contracts/4.x/api/governance#TimelockController
https://docs.openzeppelin.com/contracts/4.x/api/governance#Governor
https://docs.openzeppelin.com/contracts/4.x/api/governance#Governor
https://github.com/semperai/arbius-launch
https://github.com/semperai/arbius-launch/commit/eba18c2b437a0408c67bba1a003de4c6cc3055e8
https://github.com/semperai/arbius-launch/commit/e17188236e37488154484c7167616d525c915c07

Name Arbius Protocol

Audit date 2024-01-01 - 2024-01-29

Language Solidity

Platform Arbitrum Nova

Contracts checked

Name Address

GovernorV1

EngineV1

BaseTokenV1

L1Token

TimelockV1

Libraries: IPFS.sol,
PoolAddress.sol

Procedure

We perform our audit according to the following procedure:

Automated analysis

Scanning the project's smart contracts with several publicly available automated Solidity
analysis tools

Manual verification (reject or confirm) all the issues found by the tools

Manual audit

Manually analyze smart contracts for security vulnerabilities

Smart contracts' logic check

Arbius Protocol Security assessment

January 2024 4

Known vulnerabilities checked

Title Check result

Unencrypted Private Data On-Chain passed

Code With No Effects passed

Message call with hardcoded gas amount passed

Typographical Error passed

DoS With Block Gas Limit passed

Presence of unused variables passed

Incorrect Inheritance Order passed

Requirement Violation passed

Weak Sources of Randomness from Chain
Attributes

passed

Shadowing State Variables passed

Incorrect Constructor Name passed

Block values as a proxy for time passed

Authorization through tx.origin passed

DoS with Failed Call passed

Delegatecall to Untrusted Callee passed

Use of Deprecated Solidity Functions passed

Assert Violation passed

State Variable Default Visibility passed

Reentrancy passed

Unprotected SELFDESTRUCT Instruction passed

Unprotected Ether Withdrawal passed

Unchecked Call Return Value passed

Arbius Protocol Security assessment

January 2024 5

https://swcregistry.io/docs/SWC-136
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-131
https://swcregistry.io/docs/SWC-125
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-118
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-104

Floating PragmaFloating Pragma passed

Outdated Compiler Version passed

Integer Overflow and Underflow passed

Function Default Visibility passed

Classification of issue severity

High severity High severity issues can cause a significant or full loss of funds, change
of contract ownership, major interference with contract logic. Such issues
require immediate attention.

Medium severity Medium severity issues do not pose an immediate risk, but can be
detrimental to the client's reputation if exploited. Medium severity issues
may lead to a contract failure and can be fixed by modifying the contract
state or redeployment. Such issues require attention.

Low severity Low severity issues do not cause significant destruction to the contract's
functionality. Such issues are recommended to be taken into
consideration.

Issues

High severity issues

1. Slashing amount can be manipulated (EngineV1)
Status: Fixed

Stake slashing occurs when a submitted solution is contested and both parties for and against

contested solution vote by getSlashAmount amount of their stakes. The initial account who has

submitted contested solution is forced to participate in voting if his stake is enough. The problem is

getSlashAmount function calculates slashing amount as percentage of total staked token. This

means that during the voting each voter reduces his stake by slashing amount calculated at the

moment of voting, but actual slashing and refunding during the contestationVoteFinish

execution will use different slashing amount.

Arbius Protocol Security assessment

January 2024 6

https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-100

 /// @notice Get slash amount

 /// @return Slash amount

 function getSlashAmount() public view returns (uint256) {

 uint256 ts = getPsuedoTotalSupply();

 if (ts < MIN_SUPPLY_FOR_SLASHING) {

 return 0;

 }

 return ts - ((ts * (1e18 - slashAmountPercentage)) / 1e18);

 }

Recommendation: Fix the logic, increase test coverage.

2. Voting can be manipulated (EngineV1)
Status: Fixed

The contestation of a solution can be finished at any moment after the

minContestationVotePeriodTime time passed since contestation (and voting) has started.

During the voting period, any account can become a validator and participate in voting. Thus, as soon

as contestation is ready for finalization, any malicious actor can increase his voting power and won

contestation, slashing all opponents, including honest validators.

Recommendation: Fix the voting logic. For example, there can be introduced a preparation window

for voting, after which all new validators can't vote for that particular contestation.

Medium severity issues

1. Outdated imports (GovernorV1)
Status: Fixed

The inherited OpenZeppelin contracts are outdated (v4.3 release), they don't include several bug

fixes and improvements for Governor contracts, check v4.4.0, v4.4.2, v4.5.0, v4.6.0, v4.7.2, v4.8.0,

v4.8.3, v4.9.0, v4.9.1, v5.0.0 releases.

Recommendation: Use newer release of OpenZeppelin's contracts.

Arbius Protocol Security assessment

January 2024 7

https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.4.0
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.4.2
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.5.0
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.6.0
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.7.2
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.8.0
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.8.3
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.9.0
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.9.1
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v5.0.0

2. Possible math underflow (EngineV1)
Status: Fixed

The function getPsuedoTotalSupply subtract contract's BaseToken current balance from

STARTING_ENGINE_TOKEN_AMOUNT constant, which is 60% of total supply. There's no

guarantee, that this operation succeeds. Thus, all functions containing getPsuedoTotalSupply

call (getReward, getSlashAmount, getValidatorMinimum, submitContestation,

voteOnContestation, contestationVoteFinish, signalSupport, submitSolution,

claimSolution) can fail too.

 /// @notice Because we are using a token which is fully minted upfront we must

calculate total supply based on the amount remaining in Engine

 /// @return Total supply of Engine tokens

 function getPsuedoTotalSupply() public view returns (uint256) {

 return STARTING_ENGINE_TOKEN_AMOUNT - baseToken.balanceOf(address(this));

 }

Recommendation: Consider case of baseToken.balanceOf(address(this))

> STARTING_ENGINE_TOKEN_AMOUNT.

Low severity issues

1. Not following guidelines (EngineV1)
Status: Fixed

The EngineV1 contract is designed to be upgradable with use of OpenZeppellin's library and

Upgrades Plugin. However, EngineV1 contract doesn't follow the OpenZeppellin guideline for writing

upgradable contracts: it neither have storage gaps, nor it initializes the implementation (

_disableInitializers in the constructor).

Recommendation: Follow the guideline to ease future upgrades.

2. Inconsistent comment (EngineV1)
Status: Fixed

L23 comment contains wrong link to external documentation.

Arbius Protocol Security assessment

January 2024 8

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

// https://github.com/OffchainLabs/arbitrum/blob/master/docs/sol_contract_docs/md_docs/

arb-os/arbos/builtin/ArbSys.md

Recommendation: Correct link is https://github.com/OffchainLabs/arbitrum-classic/blob/master/docs/

sol_contract_docs/md_docs/arb-os/arbos/builtin/ArbSys.md.

Arbius Protocol Security assessment

January 2024 9

https://github.com/OffchainLabs/arbitrum-classic/blob/master/docs/sol_contract_docs/md_docs/arb-os/arbos/builtin/ArbSys.md
https://github.com/OffchainLabs/arbitrum-classic/blob/master/docs/sol_contract_docs/md_docs/arb-os/arbos/builtin/ArbSys.md

Conclusion

Arbius Protocol GovernorV1, EngineV1, BaseTokenV1, L1Token, TimelockV1, Libraries: IPFS.sol,

PoolAddress.sol contracts were audited. 2 high, 2 medium, 2 low severity issues were found.

2 high, 2 medium, 2 low severity issues have been fixed in the update.

Arbius Protocol Security assessment

January 2024 10

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability)set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without 0xGuard prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value

of any “product” or “asset” created by any team or project that contracts 0xGuard to perform a

security assessment. This report does not provide any warranty or guarantee regarding the absolute

bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with

any particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to

help our customers increase the quality of their code while reducing the high level of risk presented

by cryptographic tokens and blockchain technology.

Arbius Protocol Security assessment

January 2024 11

